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Abstract

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T)

and neurodegeneration (N) in Alzheimer’s disease (AD) arises fromnon-specific nature

ofN,modulatedbynon-ADco-pathologies, age-related changes, and resilience factors.

METHODS: We used regional T-N residual patterns to partition 184 patients within

theAlzheimer’s continuum into data-driven groups. Thesewere comparedwith groups

from 159 non-AD (amyloid “negative”) patients partitioned using cortical thickness,

and groups in 98 patients with ante mortemMRI and post mortem tissue for measuring

N and T, respectively. We applied the initial T-N residual model to classify 71 patients

in an independent cohort into predefined groups.

RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurode-

generation patterns in non-AD groups, similarly associated with non-AD factors and

diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated

with TDP-43 co-pathology.

DISCUSSION: T-N mismatch may provide a personalized approach for determining

non-AD factors associated with resilience/vulnerability in AD.
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1 BACKGROUND

Alzheimer’s disease (AD) is heterogenous in age of onset, course,

cognitive phenotype, and presence of underlying co-pathology.1–4

In particular, concomitant pathologies are frequently present in

individuals with AD, such as cerebrovascular disease and/or other

degenerative pathologies, including TAR DNA-binding protein 43

(TDP-43) and alpha-synuclein proteinopathies.2,3,5,6 Alzheimer’s also

occurs in the context of an aging brain with variability in age-related

changes (accelerated vs. decelerated) that also may influence clinical

presentation and rate of decline.7 Finally, resilience factors may affect

outcomes and degree of pathology.8–11 This heterogeneity, along

with lack of well-validated markers of non-AD influences, poses a

substantial challenge for application of AD targeting therapeutics. As

we enter an era of disease-modifying therapies, debate remains about

who might benefit most from these interventions and to what extent

specifically targeting AD-related pathology can be expected to slow

decline in the context of co-pathologies. A precisionmedicine approach

that quantifies the contribution of AD-related pathology to neurode-

generation in a dissociable manner from non-AD factors is essential

as therapies move into practice and for stratification in intervention

studies.

The accumulation of amyloid plaques (Aβ) and tau neurofibrillary

tangles (NFT) are the two hallmark pathological features of AD. Post

mortem studies12–14 and PET imaging have supported the hypothesis

that NFTs are more tightly linked to downstream neurodegeneration

than amyloid plaques.15–19 Thus, expected neurodegeneration due to

AD may be largely explained by the local presence and amount of tau

pathology.

Weexploit the non-specific nature of neurodegeneration to account

for non-AD processes by quantifying the degree and spatial pattern of

deviation from the expected level of N (neurodegeneration) for a given

level of T (tau). In essence, we “regress out” the effects of AD on brain

structure which should reveal patterns of relative atrophy associated

with non-AD factors. These regional patterns of T-N discordance may

uncover groups associated with specific potential co-pathologies (e.g.,

greater medial temporal atrophy with concomitant TDP-43) and/or

types of resilience. We hypothesized that “vulnerable” groups with

more N than expected for T would likely be associated with non-AD

pathologies. Conversely, “resilient” groupsmay be associatedwith pro-

tective factors, including greater brain reserve, such that they have less

N than expected for T.

The current analysis extends our prior work20 using this approach,

which we also explored using a metabolic21 measure of neurodegen-

eration. We previously found meaningful associations between T-N

mismatch and several factors, including age, white matter hyperinten-

sity (WMH) burden and cognition. However, specific links to non-AD

drivers of regional T-N mismatch were limited and require additional

studies.

In this manuscript, we take further steps to understand and validate

T-N mismatch in both in vivo and ex vivo analyses. (1) If T-N mismatch

reflects neurodegeneration due to non-AD factors after AD effects are

“regressed out”, then we expect patterns of mismatch would overlap

with patterns of atrophy in patients with cognitive impairment due

to non-AD etiologies. To test this hypothesis, we compared T-N mis-

matchpatterns inpatientswithAD (amyloidpositive/A+)withpatterns

of cortical thickness in those without AD (amyloid negative/A−). (2)

In addition to overlapping spatial patterns between these two groups,

we predicted overlapping associations with surrogates of non-AD fac-

tors (e.g., WMH) that may drive non-AD neurodegeneration in T-N

mismatch and the corresponding non-AD groups (A−) defined above.

(3) Brain age itself is conceptualized as one potential non-AD factor

beyond specific co-pathologies that can conveybrain reserveor vulner-

ability and was operationalized using a machine learning-based metric

that was developed to reflect brain changes orthogonalized from AD.7

(4) Links to specific co-pathologies with T-N mismatch were further

explored in an autopsy sample with ante mortem imaging. (5) Given

comorbidities may synergistically interact with AD and contribute to

cognitive impairment, we predicted that “vulnerable” versus “resilient”

T-N groups would also differ in longitudinal cognitive decline. (6)

Finally, to evaluate the potential feasibility of this approach on individ-

ual classification in the spirit of “precision medicine”, we determined

group membership of individuals in an independent cohort using the

model developed in the initial in vivo analysis.

2 METHODS

2.1 Participants

2.1.1 ADNI dataset

We included 343 participants from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) dataset (http://adni.loni.usc.edu) whowere

classified with a diagnosis of mild cognitive impairment (MCI) or

dementia. All participants had to have both a Tau positron emission

tomography (PET) scan and T1-weightedMRI scan. The closest MRI to

tau PET scans were selected. The average time between tau scan and

MRI scan was 14.4 (± 10) (SD) months. There were 184 amyloid posi-

tive (A+) and 159 amyloid negative (A−) patients included in this study.

Most of theA+patientswere also in our prior study.20 The summarized

clinical characteristics of the cohort are reported in Table S1. In addi-

tion, we included 137 A− cognitively unimpaired adults from ADNI as

controls in the voxel-wise thickness comparison analysis (Table S1).

http://adni.loni.usc.edu
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2.1.2 AVID dataset

We included71A+ symptomatic patients (36 female and 35male)with

a pair of TauPET scan andT1-weightedMRI scans from theAvidRadio-

pharmaceuticals’ study (A05) with inclusion criteria for age > = 50

and Mini-Mental State Examination (MMSE) score > 10.22 Partici-

pants provided written informed consent and both informed consent

and the protocol were approved by the relevant Institutional Review

Boards.22 TheTauPET scan andT1-weightedMRI scan for eachpatient

was obtained from the same visit. All participants were symptomatic,

including29withdementia-level impairment and42withMCI.Average

age was 73.6± 9.8, and averageMMSE score was 24.7± 4.3. The sum-

marized clinical characteristics of this cohort is displayed in Table S2.

2.1.3 Dataset

We included 98 autopsies (age 71.7 ± 11 years at MRI scan and age

75.1 ± 11 years at death) from the University of Pennsylvania Cen-

ter for Neurodegenerative Disease Research (CNDR). All individuals

had an ante mortem research-quality T1-weighted (T1w)MRI scan. For

those with multiple scans, the closest to death was chosen. Inclusion

also required that individuals had a Consortium to Establish a Reg-

istry for Alzheimer’s Disease (CERAD) score of > = 2, as that reflects

a threshold for detection of amyloid positivity with PET.23 Outside

of the CERAD cutoff criteria, we broadly accepted a range of addi-

tional pathologies and phenotypes. The majority were symptomatic

(10 MCI and 85 dementia) while 3 cases were cognitively unimpaired.

Of the 98 cases, 75 had intermediate/high Alzheimer’s disease neu-

ropathologic change (ADNC)24 as primary diagnosis (12 cases had

high/intermediate ADNC, but not as primary). In the other 23 cases,

14 had DLB as primary, 6 had a non-AD tauopathy as primary, 2

had FTLD/ALS TDP-43 as primary, and 1 had CVD as primary. Semi-

quantitative regional tau severity was determined by histology. The

average time interval between MRI scan date and autopsy date was

46.0 (± 31) months. All procedures during life were performed with

prior informed consent in accordance with Penn Institutional Review

Board guidelines.

Given that not all cases above had intermediate or high ADNC, we

performed a secondary analysis that required its presence instead of

the CERAD criteria. In total, 94 intermediate/high ADNC cases were

included in this analysis. The overall goal of these analyses was to

include cases with AD pathology and determine the degree to which

our mismatchmetric captures the presence of co-pathologies.

2.2 Image acquisition and processing

2.2.1 Image acquisition

For both ADNI and AVID cohorts, we processed both T1-weighted

MRI and tau PET (18F-flortaucipir) scans to obtain cortical thick-

ness and tau SUVR for 100 bilateral gray matter regions of interest

RESEARCH INCONTEXT

1. Systematic reviews: Although there is a relatively close

relationship between tau (T) and neurodegeneration (N),

the variability of T-N relationships may reveal potential

factors outside of Alzheimer’s disease (AD). We previ-

ously introduced the T-N mismatch data-driven frame-

work. Nevertheless, the understandings of specific links

to non-AD drivers of regional T-Nmismatchwere limited.

Further investigations into its utilization are required for

its potential applications in clinical settings.

2. Interpretation: This work further explored the concept

of how T-N mismatch reveals vulnerability and resilience

through both in vivo and ex vivo studies. We found evi-

dence that distinct T-N phenotypes were associated with

specific non-AD modulators, which predicted future clin-

ical outcomes. Furthermore, we evaluated the potential

application of this approach on individual classification in

the spirit of “precisionmedicine”.

3. Future directions: Our findings validated and extended

the understanding of T-N dissociations. Alternative

approaches of modeling T-N mismatch could constitute

future directions to further investigate this concept.

(ROIs). The detailed image acquisition and processing methods have

been previously described.20 In brief, the T1w MRI scan of resolution

1.0 × 1.0 × 1.0 mm3 were acquired by ADNI, while PET images were

of variable resolution, but reprocessed to a similar 0.8 cm full-width at

half maximum resolution. FLAIRMRI was acquired in the same session

as T1wMRI with variable spatial resolution as prescribed in the ADNI

protocol. For the CNDR dataset, ante mortem T1-weighted structural

MRI scan for all subjects were obtained with resolution ranging from

0.5 × 0.5 × 1 mm3 to 1.25 × 1.25 × 1.20 mm3. For AVID dataset, the

MRI scans have resolution 1.0× 1.0× 1.2mm3.

2.2.2 T1-MRI processing

The image processing methods have been described in our prior

work.20 Briefly, the T1-weighted MRI was processed with the ANTs

cortical thickness pipeline25 which includes steps for intensity inho-

mogeneity correction and tissue segmentation. The MRI scans were

parcellated into cerebellar, cortical, and subcortical ROIs using a

multi-atlas segmentation method.26 The volumetric thickness map for

each subject was estimated via DiReCT cortical thickness estimation

method27 to generate volumetric thicknessmaps. ROI-based thickness

was calculated by averaging the thickness maps across voxels within

the gray matter ROIs. The same processing for T1-weighted MRI was

applied to ADNI, AVID, and CNDR cohorts.
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2.2.3 PET processing

ADNI provides post-processed PET images that are generated by

averaging co-registered individual frames. Post-processed PET images

were registered to participants’ T1-weighted structural MRI using

ANTs.28 The following ANTs parameters were used. Metric: Mattes

mutual information (weight = 1, number of bins = 32), Transforma-

tion model: Rigid (gradient step = 0.2, Smoothing levels = 4 × 2 × 0,

Shrink factor = 4 × 2 × 1). MRI parcellated ROIs were transferred

to PET space. Mean PET tracer uptake in cerebellar gray matter

(18F-Flortaucipir) or cerebellar gray and white matter (18F-Florbetapir

or 18F-Florbetaben) was used as a reference region to generate a

standardized uptake value ratio (SUVR) map for each participant.

We additionally processed amyloid PET scans (18F-florbetaben or
18F-florbetapir tracer) for determining amyloid status. Amyloid status

was determined by using a composite ROI measure of 18F-florbetaben

or 18F-florbetapir tracer uptake.29 As previously published,20 we used

an SUVR ≥ 1.1141 for 18F-Florbetapir and ≥ 1.08 for 18F-Florbetaben

to define a positive amyloid scan (A+).

We processed 18F-Flortaucipir PET for AVID dataset. Attenuation-

corrected image frames were first motion-corrected by MCFLIRT30

with 6 degree of freedomcorrection and averaged. The post-processed

PET images were then processed following the same method as the

ADNI cohort to get regional SUVR.

2.2.4 White matter hyperintensity processing

TheWMHswere segmented from FLAIR images using a deep learning-

based method31 that was a top performer in a WMH segmentation

challenge.

2.3 Post mortem neuropathology measurement

All autopsies at the Penn CNDR were conducted with detailed proce-

dures described elsewhere,32 including routine examination of up to

sixteen regions32 anduniform immunohistochemistry analyses. Briefly,

the tissue was embedded in paraffin block, cut into 6 μm sections,

and immunostained for a variety of proteins in specific regions. Anti-

body NAB228 was used to target amyloid deposits, PHF-1 to measure

phosphorylated tau deposits and pS409/410 to detect phosphorylated

TDP-43 deposits. The neuropathology burden of each region was then

evaluated by pathologists by assigning a semi-quantitative score of

none (0), rare (0.5), mild (1), moderate (2), or severe (3). The diagnosis

of the degree of ADNCwas determined by standard criteria.24

2.4 Modeling T and N mismatch and clustering

2.4.1 A + ADNI T-N mismatch clustering

The T and N relationship was modeled by robust linear regression

between regional tau SUVRand cortical thickness, respectively. The bi-

square weighting function was used to mitigate the effect of outliers.

A natural log transformation was applied on tau SUVR as the inde-

pendent variable to mitigate the effects of potentially skewed SUVR

distribution. The regression residuals were discretized into a ternary

variable based on whether they were more than 1.5 standard devia-

tions above (+1) or below (−1) the regression line, or neither (0). We

used 1.5 standard deviation as the threshold to define “outliers”. In

our prior work,20 this threshold resulted in highly overlapping clusters

compared toother thresholds or no threshold at all. These ternary vari-

ables obtained from 100 bilateral ROIs were entered into Ward’s D2

hierarchical clustering33 to generate data-driven grouping of subjects.

The number of groups was determined by the elbow34 method which

visualizes within-group similarity and the dendrogram structure which

visualizes between-group distances (Figure S1A). The latter proved

more useful than the former in choosing the number of groups. Consid-

eration of group size such that every group had a reasonable number of

participants and number of groups in our prior work20 also influenced

decisions on choosing the cut point in the dendrogram structure. The

three-dimensional regional mean residual map was visualized using

MRIcroGL.35

2.4.2 A− ADNI thickness z-score clustering

The thickness of A− patients was standardized into z-scores refer-

enced to 137 cognitively normal individuals for all 100 gray matter

regions. Each regional z-score thickness was discretized into ternary

variables based on 1.5 standard deviations similar to the A+ T-N clus-

tering. These ternary variables obtained from 100 bilateral ROIs were

entered into Ward’s D2 hierarchical clustering33 to obtain NZ groups

in the same manner as above (Figure S1B). Through qualitative visual

assessment, we found matching groups across the A− Nz and A+ T-N

clusters. To quantitatively assess the degree ofmatching, wemeasured

the Euclidean distance between each A− NZ individual’s discretized

regional thickness z-score with the average discretized regional T-

N residual of each of the T-N groups. Moreover, we assessed the

similarity of spatial patterns in Figure 1A by computing a Pearson

correlation between two 400-element vectors: one comprising mean

thickness z-scores of all 100 ROIs for the 4 Nz groups (as visualized

in Figure 1A right), and the other comprising mean T-N residuals for

the corresponding T-N groups (as visualized in Figure 1A left). This

was compared with the correlation for all possible pairwise group

mappings.

2.4.3 A + AVID T-N mismatch testing

The regional T-N residuals of the AVID cohort were obtained from

the regional T-N regression models built from the ADNI A+ cohort.

Regional residuals were discretized based on the 1.5 standard devia-

tion of residuals from the training set regression (ADNI). The Euclidean

distance between each AVID patient’s discretized vector and the aver-

aged discretized residual vector of each T-N group from the ADNI

cohort was obtained and compared. Group identity was determined by
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F IGURE 1 T-N groups resembled NZ groups andwere associated
with non-ADmodulators in ADNI cohort. (A) The T-N residual
patterns for T-N groups were similar to regional thickness z-score
patterns for identified groups among A− patients fromADNI by
clustering on standardized thickness using 137 normal individuals: No
atrophy (close to 0 z-score), atrophy (negative z-score), increased
thickness (positive z-score). (B) Voxel-wise analyses reveal
significantly less thickness of T-N groups (left) and NZ groups
comparedwith cognitively unimpaired control (NC,N= 137)
controlling for age and sex (PFWER < 0.05). The colored areas represent
significant difference with the cognitively unimpaired control for each
group. (C) The between-group brain age gap (brain age – chronological
age) pair-wise comparison for T-N groups (left) and NZ groups (right)
after covarying by age. (D) The between-groupwhite matter

finding the shortest Euclidean distance among all six of the original A+

T-N groups.

2.4.4 Ex vivo T-N mismatch clustering

To validate T-N mismatch on ex vivo autopsies, we used cortical

thickness measured from ante mortem MRI and regional tau burden

measured fromhistological staining formodelingT-Nmismatch. Among

all 16 regions, only six cortical ROIs had consistent tau measurement

available: anterior cingulate gyrus, entorhinal cortex, angular gyrus

plus middle occipital gyrus, middle frontal gyrus, superior temporal

gyrus, and amygdala. The T-N relationships were modeled following

a procedure similar to the in vivo analysis, except that we addition-

ally included the time between MRI scan date and autopsy date as

covariate for modeling. The independent variable of tau burden was

treated as a continuous variable rather than as a factor here since

it resulted in lower Akaike information criterion (AIC),36 indicating

better model fit, for all six regions. The same clustering procedure

that was used for the in vivo data, as well as metrics of spatial over-

lap, was then performed on obtained residuals to partition subjects

(Figure S1C).

2.5 ADNI comorbidities evaluation

Vascular risk factors data were obtained from the ADNI INITHEALTH

table. Factors counted as vascular risk factors include hyperten-

sion, hyperlipidemia, type II diabetes, arrhythmia, cerebrovascular

disease, endovascular management of head/neck vessels, coronary

artery disease, coronary interventions, heart failure, structural heart

defects/repair, peripheral artery disease, and smoking. The number of

vascular risk factor for each patient was counted.

Brain age was obtained by the machine-learning based Spatial

Pattern of Atrophy for Recognition of Alzheimer’s Disease (SPARE)

models.7 It usesMRI scans to infer ameasure of brain age that is specif-

ically formulated to be orthogonal to AD-related brain changes. The

hyperintensities volume comparison with age as covariates among
T-N groups (left) and NZ (right) groups. (E) The pair-wise comparisons
of vascular risk factors for T-N groups (left) and NZ groups (right). The
count of vascular risk factors is the sum of participant risk factors,
assayed categorically, for hypertension, hyperlipidemia, type II
diabetes, arrhythmia, cerebrovascular disease, endovascular
management of head/neck vessels, coronary artery disease, coronary
interventions, heart failure, structural heart defects/repair, peripheral
artery disease, and smoking. Themixed groupwas excluded in the
analyses of T-N groups comparison due to its small size. For C–E,
pairwise comparisons between groups were performed. Only
significant comparisons with the typical groups (canonical for T-N
groups, no atrophy group for NZ groups), respectively, weremarked in
the figures. Significant levels corrected by Bonferroni multiple
comparison are denoted as *p< 0.05, **p< 0.01, ***p< 0.001.
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TABLE 1 Characteristics of distinct groups via T-Nmismatch clustering for 184 A+ symptomatic patients

Group (n) Description Age Sex (F/M)

Diagnosis

(MCI/Dem) Educ (SD) MMSE (SD) CDRSB (SD)

IT Tau

SUVR (SD)

Group1 (96) Canonical 76.5 (7.2) 45/51 60/36 15.4 (2.5) 25.8 (3.4) 2.85 (2.0) 1.46 (0.40)

Group2 (31) Limbic vulnerable 79.9 (6.6) 12/19 9/22* 16.5 (2.5) 22.8*** (4.3) 5.94*** (4.1) 1.49 (0.40)

Group3 (12) Diffuse vulnerable 81.0 (10) 2/10 4/8 15.2 (3.3) 23.8 (5.3) 4.27 (3.2) 1.41 (0.45)

Group4 (21) Posterior-temporal

occipital resilient

70.4* (7.1) 13/8 16/5 15.7 (2.7) 26.3 (3.6) 3.88 (3.6) 1.55 (0.38)

Group5 (19) Anterior-temporal

resilient

72.3 (8.5) 7/12 17/2 17.5* (2.4) 27.2 (2.7) 1.38 (1.3) 1.40 (0.32)

Group6 (5) Mixed 73.7 (6.6) 2/3 2/3 15.0 (3.0) 25.0 (4.6) 2.10 (1.7) 1.66 (0.31)

Group Diff. – p< 0.001 p= 0.191 p< 0.001 p= 0.024 p< 0.001 p< 0.001 p= 0.362

Note: Overall group effects (p-values indicated in the bottom row) were tested using the Kruskal–Wallis test for categorical variables (sex, MCI/dementia)

and linear regression for continuous variables (age, years of education, Mini-Mental State Examination [MMSE], Clinical Dementia Rating Sum of boxes

[CDRSB], and inferior temporal (IT) tau SUVR). The baseline cognitive scores (MMSE43, CDRSB39) and IT Tau SUVR were compared with age, sex, and years

of education as covariates. The mean (SD) is shown for age, years of education, MMSE, CDRSB, and IT tau SUVR. Pairwise comparisons of these variables

between T-N groups were obtained. Only significant pairwise comparisons between T-N groups the Group1 (canonical) were marked in the table alongside

the corresponding value. The p-values were adjusted by Bonferroni multiple comparison correction (*p< 0.05, ***p< 0.001).

brain age gapwas calculatedby thedifference betweenpredictedbrain

age and the actual chronological age.

2.6 Statistical analysis

Statistical analyses were performed in R (v4.5) or SPSS (v28). The

between group comparison of continuous variables (e.g., regional

tau SUVR) were analyzed by linear regression with covariates age

and gender. Bonferroni correction was applied on all between-group

comparisons. Comparison of ordinal or semi-quantitative variables

(e.g., histology-measured TDP-43 severity levels) was conducted

using Kruskal–Wallis tests37 or using Mann-Whitney test38 if only

comparing between two groups. Additionally, a post-hoc analysis of

the proportion of cases with the presence of any TDP-43 pathology

was compared between autopsy groups using likelihood ratio chi-

square test. The voxel-wise thickness comparison was analyzed by

using the threshold-free cluster enhancement method39 with age

and gender as covariates. The global measure of Clinical Dementia

Rating Sum of boxes (CDRSB)40 were used to evaluate longitudinal

cognitive changes. Longitudinal trajectories of cognitive scores were

assessed with linear mixed-effects models41 using cognitive scores

as the dependent variable. Fixed effects include time, group, and

time*group interaction as predictors, and covariates (age, gender,

and years of education). A random intercept was included in the

mixed-effects model to account for correlations among repeated

measures of cognitive scores. The follow up time ranged from 1 to 4

years and maximum of 4 time points for each participant. Significant

differences in rate of change between groups was determined by com-

paring the slope of time*group interaction. All statistical tests were

two-sided.

3 RESULTS

3.1 T-N groups were distinct despite similar AD
severity

Based on T-N residuals, we clustered 184 A+ symptomatic

(MCI/dementia) participants from the ADNI using hierarchical

clustering33 into six groups. The clinical characteristics of T-N groups

are described in Table 1. These groups differed in age, proportion with

MCI versus AD dementia diagnosis, years of education and degree of

cognitive impairment. The groups did not differ in inferior temporal

(IT) mean 18F-flortaucipir uptake (p = 0.362), a surrogate for AD

severity42,43; thus they do not appear to be simply reflective of AD

severity per se. Averagemaps of T-N linear regression residuals across

brain ROIs are represented visually for the six groups in Figure 2.

The group with the largest number of participants (n = 96) displayed

low overall residuals; as such, we labeled this group “canonical”. Two

groups with greater neurodegeneration than expected given their

level of tau (N > T, negative residuals) were labeled “vulnerable.” One

of these groups had N > T mostly in temporal/limbic regions, which

we labeled as “limbic vulnerable” (n = 31); the other group (n = 12)

displayed widespread N > T throughout the cortex was labeled

“diffuse vulnerable”. In addition, there were two T-N groups with

less neurodegeneration than expected given the level of tau (N < T,

positive residuals), and we labeled them as “resilient.” One (n = 21)

displayed N < T in posterior temporal to occipital cortex and was

denoted as posterior-temporal occipital (PTO) resilient. We labeled

the other group (n = 19) showing distinct N < T in lateral and medial

temporal cortex and parts of prefrontal cortex as anterior-temporal

(AT) resilient. A final small group (n= 5) with N< T especially along the

motor cortex, but N> T in temporal/limbic region, was labeled “mixed.”
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F IGURE 2 Average ROI-wise residual maps representing spatial T-N relationships for identified T-N groups among A+ symptomatic patients
fromADNI via T-Nmismatch: canonical (close to 0 residuals, N∼T), vulnerable (negative residuals, N> T), resilient (positive residuals, N< T).

To determine in a more granular manner whether the T-N groups

differed in tau burden, we assessed regional tau SUVR in represen-

tative limbic and cortical regions. Figure S2 further demonstrates

that the groups did not differ in 18F-flortaucipir uptake across lim-

bic/cortical regions (P’s>0.05).However, thebetween-group thickness

covaried with regional tau, age, and sex differed in the same repre-

sentative regions, supporting the contention of their “mismatch” status

(Figure S2).

3.2 Clustering A− symptomatic patients based on
patterns of neurodegeneration alone reveals groups
similar to those from T-N mismatch

Data-driven clustering of 159 MCI/dementia ADNI participants who

were A− using regional control-referenced z-scores of cortical thick-

ness was performed and referred to as “NZ clustering”.We determined

five NZ groups . Notably, the NZ group patterns of average z-score

thickness resembled the residual patterns of the vulnerable T-N

groups (Figure 1A). In particular, we found a group (n = 11) that had

more negative z-scores in limbic regions, a pattern that resembled the

T-N limbic vulnerable group, and we therefore labeled it as “limbic

atrophy”. Two of the groups displayed relatively diffuse low z-scores

that corresponded to the T-N diffuse vulnerable group and were com-

bined (“diffuse atrophy”, n = 26; see Figure 1A) for additional analyses

given their similar patterns (see Figure S3 for display of thickness map

for these two groups separately). The largest group (n= 114) displayed

minimal evidence of atrophy based on the control-referenced z-scores,

which we labeled it as “no-atrophy”. Finally, a small group (n = 8) with

more positive z-scores of cortical thickness in posterior temporal

and occipital regions had a very similar pattern to the residual map

of the T-N PTO resilient group, and was labeled as “PTO increased

thickness”.

To assess the correspondence between these Nz groups with their

mapped T-N mismatch group, we measured Euclidean distance as

described in Methods and observed that this distance was lowest for

the A− Nz groups to the T-N groups that we visually designated as

corresponding (Table S3). Moreover, the obtained Pearson correla-

tion between averaged regional thickness Z-score in NZ groups and

averaged T-N residuals in corresponding T-N groups as described in

the Methods section was 0.870 (p < 0.001). We then assessed the

robustness of themapping between corresponding pairs of T-N andNZ

groups by recomputing the correlation for all possible pairwise map-

pings between T-N and NZ groups, which resulted in a distribution

of much weaker correlation coefficients of 0.029 (± 0.40), suggest-

ing a high degree of overlapping spatial patterns in corresponding

groups as obtained through qualitative matching. Overall, the overlap

between spatial patterns of residuals in the T-N mismatch groups in

A+ and those of cortical thickness in the corresponding NZ groups in

A− (Figure 1A) is consistent with the notion that T-N residuals reflect

non-AD related phenomenology which may be present irrespective of

amyloid status.

It is not surprising that the NZ group had less representation of

“resilient” groups, as in symptomatic individuals without AD, there is

no defined dominant neuropathology against which resilience can be

measured. Aligning with the T-N groups, NZ groups also varied in clini-

cal characteristics in a similar fashion. For example, the PTO increased

thickness group was younger than the no-atrophy group, and the lim-

bic atrophy group showed poorer baseline cognition (Table S4). TheNZ

groups did not differ in inferior temporal mean 18F-flortaucipir uptake

values, which were generally at a level below a typical threshold for

“positive” T.43

Next, we performed voxel-wise comparison of cortical thickness of

each group from both the T-N and NZ clustering results with 137 A−

cognitively normal participants from ADNI. We predicted that pat-

terns of cortical thinning would reflect, to a large extent, regional
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aspects of T-N mismatch patterns overlaid on typical AD effects in

the T-N groups. Figure 1B shows voxels with significant differences in

thickness (PFWER < 0.05), controlling for age and sex, from cognitively

normal individuals for both T-N and NZ groups. As expected, the T-N

canonical groupdisplayed atrophy in themedial temporal lobe andpos-

terior neocortical regions, corresponding to a “typical” pattern of AD

pathology. Also expected, given how it was derived, the NZ no-atrophy

group did not differ from normal controls in cortical thickness. Alter-

natively, cortical thinning relative to controls was strikingly similar

between T-N vulnerable and NZ atrophy groups, although somewhat

more extensive in the former likely stemming from the concomitant

presence of AD-related neurodegeneration. The T-N limbic vulnera-

ble and NZ limbic atrophy groups both displayed prominent atrophy

in temporal/limbic regions, while the T-N diffuse vulnerable and NZ

diffuse atrophy groups displayed more widespread atrophy through-

out the temporal, parietal/occipital and frontal lobes. The T-N mixed

group was excluded for voxel-wise comparison due to its small size.

The T-N resilient groups and NZ PTO increased thickness group did

not display thickness differences with cognitively normal controls. As

age is a resilience/vulnerability factor, the fact that PTO resilient group

was the youngest group (Table S4) may account for differences in the

regional NZ patterns (Figure 1A) and the voxel-wise analysis, the latter

ofwhichwas controlledby age andgender (Figure1B), aswell as having

a stricter threshold of significance .

We also directly compared cortical thickness between groups with

the respective canonical or no-atrophy groups in both T-N and A−

NZ groups respectively (Figure S4). T-N vulnerable and NZ atrophy

groups displayed significant reduction in cortical thickness relative

to the respective T-N canonical or NZ no-atrophy groups whereas

the T-N resilient and NZ PTO increased thickness groups displayed

regions of increased cortical thickness.No significant voxel-wise differ-

ences were observed for any of these groups in the opposite direction

(vulnerable/atrophy > canonical/no atrophy, resilient/increased thick-

ness< canonical/no-atrophy).

3.3 T-N groups were modulated by specific
non-AD factors

We sought to explore factors that may influence the degree of neu-

rodegeneration beyond AD and, thus, may drive patterns seen in

the resilient versus vulnerable groups. We compared these possible

modulators in both T-N groups and NZ groups, reasoning that if these

groups represent the presence of concomitant non-AD pathologies,

they should show a similar association with measures suggestive

of these pathologies (e.g., WMH associated with cerebrovascular

disease).

In our prior work,20 we demonstrated that relative mismatch of

T and N was linked to age, as age is associated with atrophy in the

absence of AD pathology. However, brain aging varies across individ-

uals, and there are some that exhibit accelerated brain age changes

for their chronological age and those that have younger appearing

brains.44,45 We reasoned that accelerated or deaccelerated brain age

may be a source of vulnerability or resilience beyond chronological age

andwould have a similar influence on T-N andNZ groups.

To assess this, we calculated “brain age gap,” which is the difference

between the MRI-based brain age prediction and chronological age.

Figure 1C plots the “brain age gap” for the T-N and NZ groups. The

limbic vulnerable T-N group was associated with significantly greater

brain age gap (brain age > chronological age) than the canonical group

(p< 0.001), but this effect was not significant for the diffuse vulnerable

group. Brain age gap in bothNZ atrophy groups similarly demonstrated

a significantly greater brain age gap compared to the no-atrophy group

(p < 0.001). The similarity of these effects between the T-N and NZ

groups supports the idea that accelerated or decelerated brain aging

is a factor that drives T-N mismatch which could also be present in

non-AD symptomatic cases.

Another potential modulator of N outside of T is the presence of

cerebrovascular disease. To further study this, we assessed the volume

of WMH, a surrogate for cerebrovascular disease46 with age included

as a covariate (Figure 1D), as well as number of vascular risk factors46

(Figure 1E). We found that the T-N vulnerable groups had significantly

higherWMH volume compared to the T-N canonical group, which was

consistent with prior our work.20 The diffuse vulnerable group had a

very strong effect (p < 0.001) and was also associated with greater

number of vascular risk factors (p < 0.01) than the canonical group

(Figure 1D, E). Likewise, among NZ groups, the diffuse atrophy group

displayed significantly higherWMH (p< 0.001) and greater number of

vascular risk factors (p< 0.01) compared to the no-atrophy group.

3.4 Post mortem T-N groups were associated with
co-pathologies

We next attempted to determine a potential link between histo-

logical evidence of concomitant proteinopathies, TDP-43 and alpha-

synuclein, with T-N mismatch groups. In particular, we hypothesized

that the T-N limbic vulnerable group would display evidence of

concomitant TDP-43 pathology, such as that observed in limbic-

predominant age-related TDP-43 encephalopathy (LATE),47 given the

link between LATE and greater medial temporal lobe (MTL) involve-

ment in AD.48 We used 98 A+ autopsies from the Brain Bank of

the University of Pennsylvania Center for Neurodegenerative Dis-

ease Research (CNDR) and ante mortemMRI. We obtained five groups

through the same clustering approach as for the in vivo data and

compared thickness across the entire brain to the canonical group

(Figure 3A). We observed similar patterns of thickness differences to

what were described in the preceding in vivo analyses (Figure S4). We

therefore denoted these groups as limbic vulnerable, diffuse vulner-

able, PTO resilient and AT resilient, in addition to a canonical group.

Demographics are presented in Table S5.

We analyzed TDP-43 pathology in regions associated with early

stages of LATE neuropathic change (LATE-NC) across the different

T-N mismatch groups (Figure 3B). Consistent with our hypothesis,

we found the limbic vulnerable group was the only group with signifi-

cantly higher TDP-43 severity than the canonical group in the medial
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F IGURE 3 Post mortem assessment of TDP-43 on T-N groups of CNDR autopsies with CERAD score>= 2 (A) Voxel-wise significant
differences of ante mortem thickness between vulnerable/resilient groups and the canonical groupwith PFWER < 0.05 for CNDR autopsies. The
colored areas represent significant difference with the canonical for each group. (B) The between-group comparison of ex-vivo TDP-43 burden of
CNDR cohort in medial temporal lobe, a limbic composite ROI as well as semi-quantitative TDP-43 severities across representative regions of
early TDP-43 deposition including amygdala (Amyg), entorhinal cortex (EC), dentate gyrus (DG), and anterior cingulate gyrus (ACgG). The
comparisons were not corrected bymultiple comparisons given that we specifically predicted that the limbic vulnerable groupwould be associated
with TDP-43 pathology in this case rather than performing exploratory analysis. Significant levels are denoted as *p< 0.05, **p< 0.01, ***p< 0.001.

temporal lobe region (MTL, p = 0.023) as well as in a composite

limbic region (p < 0.01). Moreover, the limbic vulnerable group was

associated with higher TDP-43 burden in regions of early TDP-43

deposition including amygdala (Amyg, p = 0.079), entorhinal cortex

(EC, p = 0.179), dentate gyrus (DG, p = 0.014), and anterior cingulate

gyrus (ACgG, p < 0.001) compared to the canonical group (Figure 3B).

Note that these differences did not survive correction for multiple

comparisons, but were consistent with a strong a priori hypothesis.

Interestingly, the AT resilient group displayed the least amount of

TDP-43 in MTL and limbic regions which was significantly lower

than limbic vulnerable group (p < 0.05), but was not significant in

comparison to the canonical group (p > 0.05). As a post-hoc analysis,

we also compared the proportion of cases in the limbic vulnerable

group having any kind of TDP-43 pathologywith those in the canonical
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F IGURE 4 Longitudinal CDR-SB changes for all T-N groups (left) and NZ groups (right) of ADNI cohort covaried with age, sex, years of
education and baseline CDR-SB score. The shadow represents 95% confidence intervals. Themixed groupwas excluded in the analysis of T-N
group comparison due to small sample size. Only significant comparisons with the typical group (canonical for T-N groups, no atrophy group for NZ

groups) weremarked. Significant levels after Bonferroni multiple comparison correction are denoted as ***p< 0.001.

group and found that the difference was significant (70% in limbic

vulnerable group versus 34% in canonical group, p < 0.05). As not

all cases had intermediate or high ADNC (n = 11), we repeated

the analysis including only such cases (Table S6). The results were

highly similar with regard to relationship of groups with TDP-43

(Figure S5).

We also examined alpha-synuclein levels between groups specif-

ically in amygdala, MTL, and limbic composite region given early

involvement in those structures. We did not find group differences

(p = 0.86 for Amyg, p = 0.33 for MTL, p = 0.36 for limbic compos-

ite ROI). Similar to in vivo T-N groups, the post mortem T-N groups

also differed in cognition with the limbic vulnerable group showed

significantly worseMMSE than the canonical group (Table S5).

3.5 T-N mismatch predicts longitudinal cognitive
changes

In light of the potential role for the presence or absence of co-

pathologies on longitudinal trajectory of decline, we examined dif-

ferences in CDR-SB change, a measure that incorporates cognitive

and functional data, among the different T-N mismatch groups from

ADNI. We predicted that T-N vulnerable groups would display faster

cognitive decline over time due to the possibility of comorbid patholo-

gies while resilient groups would be expected to have slower decline.

Figure 4 Left displays longitudinal CDR-SB performance for different

T-N groups. The T-N limbic vulnerable group displayed significantly

steeper CDR-SB increases than canonical (p < 0.001). The diffuse vul-

nerable tended to progress faster, but this difference did not reach

statistical significance. Alternatively, the AT resilient group tended to

progress slower although not significantly so relative to the canonical

group after multiple comparisons correction.

We also examined longitudinal cognitive changes in the NZ groups

(Figure 4 Right). We predicted similar relative decline between anal-

ogous groups to the T-N analysis, but slower rates of decline due to

absence of concomitant AD. Indeed, the NZ atrophy groups displayed

a faster rate of decline than the no atrophy group (p < 0.001 for limbic

atrophy, p < 0.001 for diffuse atrophy), consistent with the expec-

tation that non-AD pathologies would be driving decline. Moreover,

the average annualized rate of change for T-N limbic vulnerable (2.23

points/year) and T-N diffuse vulnerable (1.32 points/year) groupswere

bothgreater than the rates forNZ limbic atrophy (1.17points/year) and

diffuse atrophy (0.92 points/year) groups.

3.6 Application of T-N mismatch to individual
patients

To assess the transferability of T-N mismatch and its potential clini-

cal utility on classification of individuals, we applied the T-N mismatch

framework to an independent testing cohort, referred to as “AVID”,

using existing T-N residual models and then inferred their T-N group

identity. The testing cohort contained 71 symptomatic A+ patients,

including 29 with dementia and 42 with MCI. The regional T-N residu-

als of each patientwas obtained by projecting their T-N relationship on

theexisting regional T-N regressionsmodels in theADNI cohort.Group

assignment for each individual patient was then identified by finding

the ADNI T-N group with the lowest distance based on these imputed

residuals (see the Methods section for details). We then grouped the

patients basedon inferredT-Ngroup identity and visualized their aver-

age T-N residual maps (Figure S6). The averaged Euclidean distance

of individuals from classified T-N groups in AVID cohort to prior T-N

groups in ADNI is provided (Table S7), in which the AVID T-N groups

showed the closest Euclidean distance to the corresponding ADNI
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T-N groups. To investigate the likelihood that a random spatial pat-

tern of residuals would yield a closer distance metric than the actual

data in the “forced choice” paradigm, we conducted a bootstrapping

experiment that randomly permuted thickness values for each region

between patients while keeping the regional tau the same over 1000

iterations. In each bootstrapping experiment, each patient’s Euclidean

distance to the closest prior six T-N groups were obtained and aver-

aged across all patients. The averaged Euclidean distance using the

same forced choice approachwas 3.99with standard deviation as 0.02

from 1000 times bootstrapping. The probability of reaching the origi-

nal averageddistance for the study in themanuscriptwhichwas3.17or

lower was p < 0.001.We also computed Pearson correlation between

averaged T-N residuals of ADNI T-N groups and those in classified

AVID groups, and obtained 0.80 as correlation coefficient (p< 0.0001).

The distribution of correlation coefficientswhenusing all possible non-

matching, pairwise mappings of T-N and classified AVID groups was

much weaker (0.041 ± 0.3), again suggesting a high degree of over-

lapping spatial patterns in corresponding groups. Likewise, they were

associated with clinical differences similar to that of ADNI (Table S8),

including the limbic vulnerable groupdisplaying thepoorestMMSEand

Alzheimer’s disease assessment scale cognitive subscale-11 (ADAS-

Cog11) scores among all groups and the resilient groups generally

performing better than the other groups.

4 DISCUSSION

Prior work20 from our group introduced a data-driven framework to

study variability in T-N relationship in cognitively impaired individuals

on the AD continuum that could help characterize the potential role

of non-AD pathologies. Here, we first replicate previous findings20 in

a larger dataset. We then present multiple validation experiments to

explore the power of this framework and its potential clinical utility.

In a cohort of cognitively impaired A+ individuals, we identified six

data-driven groups associated with different spatial patterns of T-N

relationships. The largest group was defined as “canonical”, in which

the T-N relationship was close to the regression line in all regions (i.e.,

N∼T). A limbic vulnerable group displayed greater neurodegeneration

than tau (N > T) in limbic regions, while a diffuse vulnerable group dis-

played N > T throughout the cortex. Conversely, there were groups

with relatively less neurodegeneration given tau (N< T) that we classi-

fied as PTO resilient or anterior-temporal resilient based on the spatial

pattern. These results replicated, in a larger cohort, those reported in

Das et al.20

In this work, we then test the hypothesis that the T-N mismatch

groups in A+ are driven by non-AD factors. We predicted that in

individuals with non-AD etiologies to their cognitive impairment (A−

symptomatic individuals), we would observe patterns of cortical thin-

ning analogous to the T-N mismatch residuals where AD-related

effects are conceptually removed. Indeed,many of the residual patterns

of the T-N groups in the A+ cohort also appeared in A− symptomatic

individuals. Similarities between these A− NZ groups and the T-N

groups support the hypothesis that the T-N residuals reflect the non-

AD factors that contribute to neurodegeneration concomitantwithAD

pathology.

One such important non-AD factor is age. Age, independent of

AD pathology, is associated with structural changes that may dis-

sociate to varying degrees with AD-related neurodegeneration.7,49

However, brain age also varies across individuals, with some exhibit-

ing more accelerated brain age for their chronological age and vice

versa. Decelerated versus accelerated brain aging may be a poten-

tial source of brain resilience and vulnerability in the context of AD

and other neurodegenerative conditions. To test this hypothesis, we

examined a measure of brain age gap in the T-N groups that was

specifically designed using a machine learning approach to dissociate

age-related brain changes from that of AD (SPARE-BA), such that it

was most dependent on patterns of atrophy in regions less affected

by AD (e.g., subcortical gray matter and cerebellum).7 Indeed, the vul-

nerable groups tended to have older brain age relative to chronological

age (accelerated aging) compared to the canonical group. This suggests

that variability in brain aging, beyond chronological age, may also influ-

ence vulnerability to AD pathology. However, one caution is that this

measure was not designed to account for non-AD pathologies which

alsomaymodulate its prediction.

Indeed, non-AD co-pathologies are very common in individuals with

AD pathology and are likely important contributors to the hetero-

geneity of AD.1–3,5,6 The “limbic vulnerable” group showed greater

neurodegeneration relative to tau pathology in temporal lobe, includ-

ing temporal pole, and orbital frontal cortex. This group also displayed

generally greater cortical thinning in these regions when directly com-

pared to the canonical group, controlling for age and sex, despite

similar inferior temporal tau burden. While there may be other colo-

calized non-AD pathologies (e.g., argyrophilic grain disease), a par-

ticularly important pathology associated with limbic involvement is

TDP-43, especially LATE,47 a common co-pathology with AD. LATE

can accelerate cognitive progression and hippocampal atrophy when

co-occurring with AD relative to AD alone,6,50 although it can also

occur independently.47 Thepatternobserved in this group is consistent

with expected regional distribution of pathology and atrophy observed

in LATE.47,51,52 This group demonstrated a more rapid rate of cogni-

tive decline relative to the canonical group, also consistent with prior

work47,50,53 studying this co-pathology in the setting of AD.Moreover,

this group was recapitulated in the post mortem analysis demonstrat-

ing an atrophy pattern remarkably similar to that in the in vivo group.

Most importantly, this T-N group demonstrated higher levels of TDP-

43deposition inMTLand limbic regions compared tootherT-Ngroups,

including the canonical group, supporting the hypothesis that TDP-43

proteinopathy drives limbic T-Nmismatch.

In contrast, the T-N resilient groups, especially the AT resilient

group with N < T predominantly in temporal regions, tended to con-

tain the least amount of TDP-43 in MTL based on the post mortem

analysis. Individuals in this groupmay be particularly resistant to TDP-

43 pathology. It has been argued that resilience to AD may partly

depend on resistance to TDP-43, or other pathologies.54 Given that

even the canonical group in the post mortem analysis had some degree

of TDP-43 pathology and that comorbidity is extremely common in AD
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(Figure 3B), perhaps the canonical group is actually a mixed pathology

group, and it is the “resilient” groups that lack co-pathology. The canon-

ical group, rather than being “pure” AD, thus, may contain a medium

level of co-pathologies; the AT resilient and limbic vulnerable groups

then may be associated with the least and the most TDP-43 severities,

respectively.

Another factor that is thought to provide some resilience to

pathology is education.55 Indeed, the AT resilience T-N group had

significantly greater years of education (Table 1). Nevertheless, the sig-

nificance of this association was mild. Replication in other samples will

be needed to study if the effect is consistent. Moreover, gender could

be a potential modulating factor for T-N mismatch. Although we did

not find any significant difference in gender between T-N groups, the

in vivo PTO resilient group tended to have more female participants.

There is relatively consistent data in the literature56 that tau levels are

higher in females, which may reflect their ability to mask more disease

due to resilience. Future work can further explore the role of gender in

resilience.

The diffuse vulnerable group had greaterWMHvolume and number

of vascular risk factors57 compared to the canonical group, controlling

for age, suggesting that cerebrovascular pathology may contribute to

the apparent “vulnerability” in this group. Alternatively, theAT resilient

group tended to have lower WMH volumes than the canonical group,

but did not reach statistical significance. This group also displayed less

thinning in temporal regions. There are some data3,58 suggesting that

TDP-43 is more common in the setting of cerebrovascular factors such

that its absence may allow for AT resilience to TDP-43. Further, align-

ing with TDP-43 findings above, the canonical group had evidence of

an intermediate degree of vascular disease between AT resilient and

diffuse vulnerable, akin to a continuum of cerebrovascular pathology

(AT resilient< canonical< diffuse vulnerable). This again suggests that

the degree of co-pathology may modulate relative resilience or vul-

nerability, but that “typical” AD is marked by modest degree of other

pathologies, consistent with autopsy data.

Clustering based on A− thickness also produced a more diffuse

atrophy group with high levels of WMHs and vascular risk factors

while those with less atrophy had less evidence of small vessel dis-

ease. The replication of these patterns in the Nz groups again supports

the hypothesis that T-Nmismatch is teasing out non-ADmodulators of

resilience and vulnerability.

Importantly, we found that T-N mismatch groups differed not only

in cross-sectional, but also longitudinal cognitive outcomes, consis-

tent with our prior work in a smaller cohort.20 Vulnerable groups

declined faster than the canonical groups, likely attributable to the

presence of non-AD pathologies. In the setting of AD, tau and

other pathologies may synergistically interact to accelerate cogni-

tive impairment.6,50,53 These findings are consistent with other work

demonstrating that comorbid pathologies contribute to dementia

phenotype and course.6,59,60 Moreover, the AT resilient group demon-

strated relatively little evidence of progression although not statisti-

cally different from the modest longitudinal decline in the canonical

group. Thus, T-N mismatch may have implications for prognosis and

potential stratification in intervention studies. Interestingly, the paral-

lel NZ groups displayed qualitatively similar, but generally less steep

CDR-SB decline, consistent with the expectation that AD plus other

comorbidities result in faster decline than non-AD drivers of decline

alone.6,50,53,59

As further support for the robustness and potential clinical utility of

the T-N mismatch framework, we made portable and straightforward

inference of T-N group for individual patients in an independent

cohort, based on an existing T-N residual model. Inferred phenotypic

groups shared clinical characteristics with the training cohort. This

indicates that T-N mismatch modeling may be generalizable and

therefore may have clinical utility and holds promise for person-

alized medicine. These T-N groups were also largely reproducible

in the post mortem cohort. Finally, similar, although not completely,

overlapping phenotypes were also found using an alternative marker

of neurodegeneration, 18F-fluorodeoxyglucose PET, in our prior

work.21

Our study has some limitations. First, while we used linear regres-

sion to establish T-N mismatch, T-N relationship is likely, to some

extent, non-linear even in pure AD cases. Non-linear approaches,

including image-to-image translation, may better model T-N relation-

ships, including possible remote spatial dependence between network

hubs and connected nodes. Second, some degree of arbitrariness in

decisions around the number of clusters limits the robustness of the

data driven clustering framework. Extracting clusters at different

resolution levels could potentially provide insights about broader or

finer parcellation of phenotypes. Third, our ex vivo analysis utilized

only six ROIs due to specimen availability and semi-quantitative

measures of tau pathology, which further limits the sensitivity for

assessment of deviations. Nonetheless, groups from this post mortem

dataset were similar to those in our in vivo analysis. Another limita-

tion to histology is that PHF-1 is not specific to tau neurofibrillary

tangles, potentially conflating other non-AD tauopathy contribu-

tions. Last, the dataset sizes were relatively modest. Therefore, the

results may not generalize to other cohorts with greater numbers

of co-morbidities and race/ethnicities that are not well represented

in ADNI.

In summary, our findings demonstrate that T-N mismatch depicts

vulnerability and resilience likely attributable to specific non-AD

pathologies or resilience factors. This approach may therefore

provide important characterization of phenotypic heterogeneity

in clinical populations, with implications for therapeutic trials and

management.
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